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Abstract: When a circular plate is rotated at the bottom of a cylindrical vessel containing fluid, 
the fluid surface can form stable polygons under certain conditions. This phenomenon is very 
surprising, as it seems that the rotational symmetry of the setup is mysteriously broken when 
polygons are formed. I experimentally measured the geometries of the formed polygons and 
studied their dependence on parameters such as the plate rotational rate. Both the number of 
sides and the sizes of the polygons were found to increase when the plate rotated faster. 
 
In my research, I sought to develop a theoretical model that could accurately predict the 
properties of the formed polygons in agreement with experimental results. Taking on a novel 
approach of analysing the forces on a fluid particle travelling along the boundary of the 
polygon, the mechanism of polygon formation and the effect of the plate rotation on the 
polygons were physically understood. Applying it quantitatively, with considerations on the 
properties of the fluid flow, a differential equation governing the polygon’s steady-state 
geometry was formulated. A high degree of predictive power into the shape of the polygon was 
achieved, closely matching experimental data. 
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1 Introduction 
 
When a plate is rotated at the bottom of a cylindrical vessel that is partially filled with fluid, 
the surface of the fluid surprisingly forms polygons under certain conditions, breaking 
rotational symmetry. These polygons tend to be stable, and they rotate in the same direction 
as the plate but at a lower rate. Prior studies have investigated the number of sides of the 
polygons formed; Jansson et al. (2006) experimentally tested the dependence of the number 
of sides of the polygons on parameters like plate rotation and fluid volume, while Tophøj et al. 
(2013) theorised the polygon formation to be a result of resonance between gravity waves and 
centrifugal waves and used this principle to predict the number of sides of polygons. Due to 
the complex nature of the fluid flow in the setup, less investigation has gone into predicting 
the geometry of the polygons’ shapes. Moreover, a physical account of the phenomenon and 
its dependence on variables remain less well-understood. 
 
This study developed a quantitative model of the shapes of polygons formed under this 
phenomenon. This was built on a force analysis of surface fluid particles, which circumvented 
the need to fully solve for the complicated flow profile of the fluid. Simultaneously, this 
provided qualitative insight into the polygon formation and the dependence of its properties 
on parameters like plate angular velocity and fluid volume. 
 
2 Method 
 
A thin circular acrylic plate was placed near the bottom of a transparent cylindrical vessel, 
both with approximately equal radii 𝑅 = 8.65𝑐𝑚. The plate was attached to a vertical axle 
below, which passed through the base of the vessel via a waterproof bearing and was rotated 
at a controllable angular velocity 𝜔 by LEGO motors from below (Fig. 1). During experiment, 
the vessel was filled with water to height level 𝐻! above the plate before setting the plate in 
motion. Food colouring was added to accentuate the water and a marking was made on the 
rotating plate to measure its angular velocity and ensure that it was constant. 
 

 
Fig. 1: Experimental setup (left), and view of the camera from above (right). 

 
3 Force Analysis 
 
It was observed experimentally that even though rotational symmetry was broken when a 
polygon was formed, the height level of fluid at the walls of the vessel remained uniform, i.e. 
independent of the azimuthal angle. The following analysis will rely heavily on this fact. 



 

 3 

 
I. Qualitative Account 
 
Consider the bottom-most layer of fluid that lies on the plate. Because of the uniform fluid 
height at the vessel’s walls, the pressure difference between a point on the central dry region 
and a point contacting the walls (both points residing on this layer) is uniform. For a fluid 
particle travelling along the boundary of the dry region, this pressure difference imparts a 
radially inward force to it. The magnitude of this force is positively related to the pressure 
gradient (the rate of change of pressure over distance) between the dry region and the vessel’s 
wall. 
 
In the axisymmetric case, the pressure gradient is just right, such that the resultant force on 
the particle exactly provides its centripetal force (Fig. 2a). Now consider a small radially 
inward perturbation to the dry region. The distance between the dry region and the walls 
increases, whilst the pressure difference remains constant (because the pressure difference is 
independent of the azimuthal angle), causing the pressure gradient to decrease. As such, the 
force due to pressure gradient is no longer sufficient to provide the required centripetal force, 
so the particle accelerates outward in the next instant (Fig. 2b). At this next instant, the 
distance between the dry region and the walls is now smaller, and pressure difference is still 
unchanged, so the pressure gradient increases. The force from the pressure gradient is now 
larger than the required centripetal force, leading to inward motion of the particle at the next 
instant (Fig. 2c). This leads to a cycle of oscillating pressure gradients which results in the 
oscillatory motion of the fluid particle. This oscillates the boundary of the dry region, giving 
rise to polygonal shapes (Fig. 2d). 
 

    
(a) (b) (c) (d) 

Fig. 2: A fluid particle on the boundary of the dry region tends to exhibit oscillatory motion, 
such that a small radial perturbation from an initially axisymmetric state [in (a)] 
eventuallycauses the dry region to transition from a circle to a polygon [(b)-(d)]. 

 
This force approach provides a physical explanation of how the polygons form. It also provides 
an understanding of how the properties of the polygons vary with parameters, which will be 
analysed later. 
 
II. Axisymmetric State 
 
Before investigating the asymmetric state where a polygon is formed, we firstly study the 
axially symmetric state where the dry region is circular. A cylindrical coordinate system is 
chosen with the reference plane lying along the plate and 𝑧-axis passing through the central 
axis of the plate. In the axisymmetric state where the dry region is circular, fluid flow is only 
directed in the azimuthal direction and is irrotational (Bergmann et al., 2011), such that the 
azimuthal velocity 𝑈" is given by (1). 

𝑈" =
Γ
2𝜋𝑟

	 (1) 
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where Γ is the circulation of the flow. A relation between Γ and 𝜔 can be established in a 
similar manner to Tophøj et al. (2013); by considering a balance of torques between the 
driving torque from the plate and the resistive torque arising from skin friction with the vessel 
walls. Further details are in Appendix A. 
 
III. Asymmetric State 
 
Here we consider the shape of the polygon at the steady state. The boundary of the polygon is 
described by the curve 𝑙, such that the polygon’s boundary is given by 𝑟 = 𝑙(𝜃), where 𝜃 is the 
azimuthal angle. In the lab reference frame, the polygon rotates at Ω < 𝜔 in the same 
direction as the plate. To simplify analysis, we take on the reference frame that rotates at Ω 
along with the polygon, so that the polygon appears stationary in our frame. Let us consider a 
slice of fluid at azimuthal angle 𝜃, and the variation of the height of the fluid surface along 
this slice with radial distance, ℎ(𝑟). Fig. 3 shows a possible plot of ℎ(𝑟), and the forces acting 
on a specific particle that lies on the fluid surface of this slice at radial distance 𝑟. 𝜔′(𝑟) is 
defined as the angular velocity of this surface particle (in the rotating frame). 
 

 
Fig. 3: Sketch of a possible ℎ(𝑟), starting from 𝑟 = 𝑙, the boundary of the polygon (which is 

dependent on 𝜃), and ending at 𝑟 = 𝑅, the wall. Forces on a surface particle located at radial 
distance 𝑟 include its weight, normal force (from the rest of the fluid), centrifugal and Coriolis 

forces that arise from the rotating frame. 
 

Under the assumption that the length scale of vertical oscillations is small compared to that 
of horizontal oscillations, Σ𝐹# ≈ 0. Writing Newton’s Second Law in the radial direction, a 
general equation of motion can be derived for any particle on the surface as shown in (2). 
 

𝑑$𝑟
𝑑𝑡$

= 𝑟(Ω +𝜔%)$ − 𝑔
𝑑ℎ
𝑑𝑟

(2) 

 
𝜔′ is generally not known for most of the fluid particles, as fluid flow in this asymmetric state 
is very complex in nature. However, 𝜔′ is known for some “special” particles. Since fluid flow 
at the boundary layers between the fluid body and solid surfaces are dominated by viscous 
effects, 𝜔′ of particles at the fluid-plate and fluid-wall boundary layers are expected to retain 
their original 𝜔′ from the axisymmetric state. As such, for the surface particle at 𝑟 = 𝑙, i.e. the 

boundary of the polygon, 𝜔% = &
$'()

− Ω. Applying this to (2) produces a differential equation 
for 𝑙(𝜃), in (3): 
 

𝑑$𝑙
𝑑𝑡$

= D
Γ

2𝜋𝑙$
−ΩE

$ 𝑑$𝑙
𝑑𝜃$

−
Γ
𝜋𝑙*

	D
Γ

2𝜋𝑙$
−ΩE	D

𝑑𝑙
𝑑𝜃
E
$

=
Γ$

4𝜋$𝑙*
− 𝑔

𝑑ℎ
𝑑𝑟
G
+,(

(3) 
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To deduce the final term in (3), the mathematical form of ℎ(𝑟) needs to be investigated. A 
few conditions about ℎ(𝑟) are known: it starts at zero at 𝑟 = 𝑙, giving (4); it ends at some 
uniform height at the wall 𝑟 = 𝑅, giving (5). For the surface particle at the wall where 𝑟 = 𝑅, 

𝜔% = &
$'-)

− Ω since it is part of the fluid-wall boundary layer, so applying (2) to this particle 
gives a constraint for its gradient in (6). Finally, a constraint on the total fluid volume present 
in the setup produces (7). 
 

ℎ(𝑙) = 0 (4) 
ℎ(𝑅) = 𝐻 (5) 

ℎ%(𝑅) =
Γ$

4𝑔𝜋$𝑅*
(6) 

I 𝑟	ℎ(𝑟)	𝑑𝑟
-

(
=
1
2
𝑅$𝐻! (7) 

 
From these four conditions, ℎ(𝑟) can be reasonably approximated to take on a cubic 
polynomial form. The differential equation from (3) can now be completed to yield (8), which 
can be numerically solved. 
 

D
Γ

2𝜋𝑙$
−ΩE

$ 𝑑$𝑙
𝑑𝜃$

−
Γ
𝜋𝑙*

D
Γ

2𝜋𝑙$
− ΩED

𝑑𝑙
𝑑𝜃
E
$

=
Γ$

4𝜋$𝑙*
− 𝑔 K

3(3𝐻𝑙$ + 4𝐻𝑙𝑅 − 7𝐻𝑅$ + 10𝐻!𝑅$)
(𝑙 − 𝑅)$(3𝑙 + 2𝑅)

+
Γ$(2𝑙 + 3𝑅)

4𝑔𝜋$𝑅*(3𝑙 + 2𝑅)
L (8)

 

 
4 Results and Discussion 
 
I. Height Profile 
 
The cubic form for ℎ(𝑟) generally produces curves similar to Fig. 4a, which start out concave 
and end off convex. Experimentally, by shining high-intensity light onto a slice of fluid from 
above, the surface of the fluid slice was illuminated, and its side view image is shown in Fig. 
4b. There is a good agreement, between theory and experiment, in the general shapes of the 
fluid surface profiles. 
 

 
 

(a) (b) 
Fig. 4: (a) Example of theoretical height profile ℎ(𝑟), and (b) experimentally captured height 

profile. 
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II. Polygon Shape 
 
For sufficiently large 𝐻! and 𝜔, the dry region was found to produce elliptical shapes (Fig. 
5a). Triangles were formed when 𝜔 was further increased (Fig. 5b). This trend agrees with 
what was found by Jansson et al. (2006). Moreover, the mean radius of the dry region 
increased with 𝜔. 

  
(a) (b) 

Fig. 5: Experimentally obtained polygons for (a) ellipses, and (b) triangles. Pictures are 
arranged in sequence of increasing 𝜔. 

 
The previous qualitative account can explain the trend of mean radius increasing with 𝜔. For 
higher 𝜔, the required centripetal force for a fluid particle travelling along the polygon’s 
boundary increases. The net radially inward force on the particle must therefore increase, 
which can only be provided by having a steeper pressure gradient. This can only happen 
provided the distance between the boundary of the dry region and the vessel’s walls 
decreases, which simultaneously increases the dry region’s mean radius. Additionally, to 
explain why the formed polygons have more sides with increasing 𝜔 (from 𝑛 = 2 for ellipse to 
𝑛 = 3 for triangle), notice that a particle travelling along the boundary of the dry region has 
less time to experience the force from the pressure gradient for larger 𝜔. The change in 
velocity of the particle as it passes by the corner of the polygon is hence reduced, so the 
particle’s velocity vector only turns through a smaller angle, resulting in an increase in 
number of sides of the polygon. 
 
The differential equation in (8) that governs 𝑙(𝜃) also offered accurate predictive power into 
the polygon’s geometry, as demonstrated in Fig. 6. 
 

    
(a) 𝜔 = 29.6	𝑠./ (b) 𝜔 = 33.0	𝑠./ (c) 𝜔 = 43.6	𝑠./ (d) 𝜔 = 45.3	𝑠./ 

Fig. 6: Shapes of ellipses [in (a) and (b)] and triangles [in (c) and (d)] from experiment (blue) 
and theory (orange), for varying 𝜔 and constant 𝐻! = 3.7𝑐𝑚. The diagrams are not drawn to 
scale. 
 
5 Conclusion 
 
Despite the difficulties in attaining the full fluid flow profile in the asymmetric state, this 
study offered novel theoretical insight into the phenomenon. By using a more indirect and 
simplified approach concerning the forces on the fluid surface particles, the polygon 
formation was qualitatively explained, and a single equation governing approximately the 
polygon’s geometry was formulated. This model achieved a high degree of predictive power 
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into the shape of the polygon formed at the steady state, which closely matched experimental 
results. 
 
Investigation of higher-order polygons beyond triangles were excluded from this study because 
owing to the small 𝑅 of the vessel used, squares and pentagons could only be obtained at 
higher 𝜔; but at such high 𝜔, the fluid flow became turbulent and free-surface fluctuations 
were dominant to the extent that obtained shapes were not stable. 
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Appendix A: Axisymmetric Flow Profile 
 
The full Navier-Stokes equation is written in (9), where  𝑈PP⃗ (𝑟, 𝜃, 𝑧) denotes the velocity flow 
field and 𝑃(𝑟, 𝜃, 𝑧) describes the fluid pressure. 
 

𝜕𝑈PP⃗
𝜕𝑡

+ U𝑈PP⃗ ⋅ ∇X𝑈PP⃗ = −
1
𝜌
∇𝑃 + 𝜈∇$𝑈PP⃗ + 𝑔⃗ (9) 

 
We are only concerned with the flow profile at the steady state, so we can eliminate time 
dependence from the equation. In the axially symmetric state, the variables should be 
independent of 𝜃, and we may assume that secondary flows in the radial and axial directions 
are non-existent. These simplifications reduce the equation to the form in (10). 
 

𝑈"
𝑟$

=
1
𝑟
𝜕𝑈"
𝜕𝑟

+
𝜕$𝑈"
𝜕𝑟$

+
𝜕$𝑈"
𝜕𝑧$

(10) 

 
Solving for 𝑈" produces two solutions: 𝑈" ∝ 𝑟, which corresponds to solid body rotation, and 
𝑈" ∝

/
+
, which corresponds to irrotational flow. The former predicts a convex-shaped surface, 

while the latter predicts a concave-shaped surface. In order to determine which of these 
solutions corresponds to reality, the fluid height profile in the axisymmetric state is observed 
experimentally as shown in Fig. 7, and found to be concave. Therefore, the irrotational flow 
profile is used, in agreement with the findings by Bergmann et al. (2011). 
 

 
Fig. 7: Side view of the fluid surface in the axisymmetric state, with the fluid surface traced 

by the red curves. 
 

To determine the relation between Γ and 𝜔, we consider two torques acting on the entire fluid 
body: 𝜏0 is the torque delivered by the rotating plate, while 𝜏1 is the resistive torque from the 
walls. At the steady state, these two torques must equate. Both torques can be computed by 
integrating the shear stress 𝜎(𝑟) across each surface, as shown in (11). 
 

𝜏 = I 𝑟	𝜎(𝑟)	𝑑𝐴
	

34+5678
(11) 

 
This shear stress arises from skin friction, which is dependent on the skin friction coefficient 
𝐶5 of the surface, and the relative velocity between the fluid body and the surface 𝑣, in (12). 
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𝜎(𝑟) =
1
2
𝐶5𝜌𝑣$ (12) 

 
Performing the integration using (11) and (12), and balancing 𝜏0 and 𝜏1 produces a relation 
between Γ and 𝜔. The relation is also dependent on the ratio of the skin friction coefficient of 
the wall 𝐶1 to that of the plate 𝐶0 (since the surfaces of the plate and the walls differ, their 
skin friction coefficients are also different). This ratio can be determined by fitting with the 
experimentally determined graph of radius of dry circular region 𝑎 against 𝜔. Mathematically, 
𝑎 and 𝜔 are related by (13). 
 

𝐶1
𝐶0
⎣
⎢
⎢
⎡ 𝜔$

5(𝑅9 − 𝑎9)
+

2𝑎𝑅𝜔(𝑎* − 𝑅*)

3e𝑅$ − 𝑎$ − 2𝑎$ ln h𝑅𝑎i
−

2𝑎$𝑔𝐻!𝑅$(𝑎 − 𝑅)

𝑅$ − 𝑎$ − 2𝑎$ ln h𝑅𝑎i⎦
⎥
⎥
⎤
=

2𝑎$𝑔𝐻!$𝑅(𝑅$ − 𝑎$)

m𝑅$ − 𝑎$ + 2𝑎$ ln h𝑅𝑎in
$ (13) 

 
The best fit for the graph of 𝑎 against 𝜔 is obtained for a 𝐶1/𝐶0 ratio of 1.8, as shown in Fig. 
8. 
 

 
Fig. 8: Experimentally determined 𝑎 for different values of 𝜔 and 𝐻! shown by the plot 

points, and the theoretical curves produced for the best-fit 𝐶1/𝐶0 ratio. 
 
This best-fit ratio of skin friction coefficients is used in the relation between Γ and 𝜔, which 
is used in the rest of the theoretical model. 
 
 
 
 
 


