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Abstract: Deep learning models have been successfully employed for various challenging biological
tasks; however, the complexity and depth of neural networks render them black boxes. To address
this problem and reveal the important features learned by deep learning models, we developed
a novel computational pipeline for decoding neural network models trained on protein sequence
data. Our pipeline consists of several stages: generating random input sequences, running the
model to rank sequences, clustering top sequences to characterize motifs, and visualizing motif
clusters with sequence logos. Using our pipeline, we deciphered the binding motifs learned by
a deep learning model trained on a pan-cancer dataset containing more than 30 million B cell
receptor (BCR) protein sequences from ~5,000 patients. We discovered 65 BCR binding motifs
among 13 cancer types and validated the robustness of the motifs through extensive correlation
analyses. Our study is the first to reveal and validate anti-tumor BCR binding motifs that target
specific tumor antigens, a discovery that is critical to the future synthesis of new antibody drugs
for cancer treatments. Furthermore, we demonstrated the versatility of our computational pipeline
by using it to decode a second deep learning model, showing that our methods are applicable to a
variety of neural networks.
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1 Introduction

9.6 million people worldwide die from cancer each year [1]. To combat cancer, it is critical
to understand the adaptive immune system, which possesses the ability to recognize a diverse set
of tumor antigens and mutations. In particular, B cells are an integral part of the human immune
response, as they recognize and bind to disease-causing tumor antigens and signal the release of
antibodies to attack tumor cells [2]. Through these mechanisms, B cells can effectively control
tumor growth in humans.

In this study, we focus on the B cell receptor (BCR), which is situated on the surface of the
B cell. The BCR is the driving force behind the activation of a B cell: when a BCR recognizes
and binds to an antigen presented by a tumor cell, it triggers the secretion of disease-preventing
antibodies into the tissue and blood. B cells are extremely effective in targeting specific antigens
because of the complementarity determining region 3 (CDR3). Since tumor cells belonging to the
same cancer type have a set of shared antigens, such as neoantigens, the B cell CDR3 also has
similar binding specificities among different cancer types to recognize the tumor antigens [3].

The DeepBCR model is a multi-layer deep neural network that was developed prior to this study
[4]. Based on input BCR repertoires, DeepBCR predicts the corresponding cancer-type association
scores to model the binding affinity between the BCR and antigen. DeepBCR was trained on a
dataset that contains BCR sequences for ~5,000 patient samples across the 13 cancer types.

After being trained on the preprocessed dataset, the DeepBCR neural network achieved an av-
erage prediction accuracy of 39.3% and area under the curve (AUC) of 0.80 across all 13 cancer
types, compared to a benchmark random predictor (accuracy 7.7% and AUC 0.5). The predictive
ability of DeepBCR to associate BCR sequences to tumor-types motivated us to determine the hidden
information the model learned from the TCGA dataset that helped it make accurate predictions.

Many neural networks such as DeepBCR have been trained on large sequence datasets and have
achieved high prediction accuracy, yet we are unable to reveal the motif patterns they have learned.
In this study, we aimed to address the lack of computational methods for decoding sequence-based
neural networks by interpreting and characterizing the tumor-specific BCR motifs learned by the
DeepBCR model from the TCGA dataset. Therefore, we established two primary objectives: 1)
develop a pipeline to decode neural networks trained on protein-sequence data and 2) apply the
pipeline to DeepBCR to discover anti-tumor BCR binding motifs.
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2 Methods

Input:
CDR3 sequences

DeepBCR Model

Output

Tumor-specific scores

Motif Discovery H Validation E);\ts:fglc::isoi:d}

[ Ranking & thresholding | | Synthetic simulation | ’

Discovery of antigen-
specific motifs

Clustering

Application to

Sequence logo |
DeepDegron model |

visualization

1. Rank k-mer sequences 2. Select top 3. Cluster sequences 4. Visualize top motifs
by tumor association scores sequences to characterize motifs  using sequence logos

seqerce | scre

DPSDCC 0.72

DPSDCC

Top

PMPNCL

PPKDCL 0.69
PPISKQ
IFSDCP 0.32 Remaining )

IEIPCS
WWLDCC  0.29

Figure 1: An overview of our multi-step computational motif discovery pipeline. In addition to
DeepBCR, the pipeline framework can be adapated to decode the motifs learned by other deep
neural networks trained on protein sequence data.

In this study, we developed a novel computational pipeline to characterize the protein sequence
motifs that DeepBCR learned from the TCGA dataset. As outlined in Figure 1, our computational
pipeline, created using Python and R, consists of several stages. First, a set of random k-mer
sequences is generated and fed into a trained DeepBCR model, which predicts tumor-association
scores for each input sequence. Next, we perform motif discovery, the main component of our
pipeline. To extract the motifs learned by DeepBCR, we rank all the sequences based on the tumor-
specific scores, determine a selection threshold for each cancer type, and use this threshold to select
the top-scoring sequences for each cancer type. Then, greedy clustering is performed on these se-
quences to identify motif clusters, which are visualized using sequence logos. In the validation
stage, we verify the robustness of our pipeline by running a synthetic data simulation, compar-
ing correlations between models with different training parameters and iterations, and conducting
binding site analyses on full-length CDR3s.

To demonstrate the generalizability of our methods, we applied our computational pipeline to
decode a second deep neural network, the DeepDegron model. DeepDegron predicts degron reg-
ulatory potential (DRP), the likelihood of an input protein sequence to contain a degron [5]. By
interpreting the motifs learned by this model, we hoped to identify degrons, short linear amino acid
sequences that regulate the protein degradation process [6] [7].
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3 Results
Top-scoring Motif Clusters for 13 Cancer Types
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Figure 2: The 65 anti-tumor BCR motif clusters that we discovered among 13 cancer types. Each
cluster is represented in the table by its leading sequence, and the background color of each table
cell denotes the size of a certain motif cluster.

Our computational pipeline clusters sequences within cancer types to characterize motifs. Figure
2 shows a table of the top five tumor-specific motifs that were discovered by applying our pipeline to
analyze the inputs and outputs of DeepBCR. Each cell represents a single cluster of top sequences
for a specific tumor-type condensed into a single 6-letter leading sequence. The background color
of each cell denotes the significance of the respective motif cluster, which was determined by the
cluster size.

We validated our results by finding strong tumor-specific correlations between the motifs from
two DeepBCR models with different training parameters. Figure 3A shows the 13x13 correlation
heat map, in which the color of square denotes the magnitude of the correlation between the motif
clusters for Model 1 and Model 2 at the specific tumor-type combination. The heat map displays a
strong correlation along the diagonal, an expected pattern because motifs for the same tumor-type
should remain consistent, even if they are determined by different DeepBCR models.
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A Tumor-Type Correlations Between DeepBCR Models
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Figure 3: (A) A heat map that displays the tumor-specific correlations between two models with
different training parameters. (B) and (C) are 3D and 2D heat maps, respectively, that show over-
all correlation scores between two DeepBCR models at training iteration combinations from 200
to 2000. The overall correlation score was calculated by finding the difference between average
diagonal and non-diagonal correlation values.

We also applied our pipeline to decode the enriched motifs learned by the DeepDegron model,
a second neural network. By using similar ranking, clustering, and visualizing algorithms, we were
able to identify 101 degron motifs across motif lengths of 2, 3, and 4. Figure 4 shows the top
motifs for each length, along with their enrichment p-value scores and the corresponding sequence
logos.
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Figure 4: In total, 101 degron motifs were identified by our pipeline. The tables and sequence logos
show the enriched degron motifs and their respective p-value enrichment scores for motif lengths
2,3,and 4.

4 Conclusion

In this study, we developed a novel computational pipeline for decoding deep neural networks
trained on protein sequence data. Our pipeline consists of several algorithms and stages: using the
model to rank input sequences, running statistical analysis to identify top sequences, clustering
sequences to form motifs, and visualizing motifs using sequence logos.

We applied our computational pipeline to decipher the information that DeepBCR neural network
learned from the comprehensive TCGA cancer dataset, yielding the discovery of 65 B cell receptor
motif signatures that are implicated in the BCR-antigen binding interaction. The reliability and
accuracy of these motifs were determined via three independent validation methods, including
the synthetic data simulation, tumor-specific correlation matrices, and binding site analyses. Our
discovery and validation of these novel anti-tumor motifs can be leveraged to drive the development
of targeted cancer immunotherapies and improve the identification of biomarkers used for early
detection of cancers.

Finally, through applications to the transfer learning and DeepDegron models, we demonstrated
that our computational pipeline can be readily adapted towards neural networks trained on other
data types and sequences. The versatility and generalizability of our pipeline will enable it to be
reused and employed for decoding a wide range of deep learning models, which will ultimately help
lead to more transparent and reliable Al.
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