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Abstract. My research focuses on the Atiyah-Segal completion theorem. This
is a theorem in equivariant K theory in mathematics. It relates completion of
K group with K group of completion space.

To be explicit, let me give some standard notations in topology and al-
gebra: suppose G is a finite group for simplicity. The spaces we study are
CW complexes. Here a CW complex means a space that can be written as a
sequence of attaching disks. Furthermore, a G-vector bundle means attaching
disk orbits (G/H) × Dk. K theory studies the vector bundles over a space,
which is a locally trivial projection with each fiber a vector space. The direct
sum of two vector bundles gives an addition on the set of vector bundles and
it forms a monoid. The K group of a space is defined by making this direct
sum a group by what is called Grothendieck group. For any group G, there
exists a universal bundle EG → BG such that every bundle can be obtained
by pull-backs. Then the completion space is defined as X × EG.

This work follows from a 1988 paper. My research aims to add details to
the proof in the paper in a simple and clear mannar.

1. Introduction

Paper ”A Generalization of the Atiyah-Segal Completion Theorem” gives a short-
est route from Bott periodicity(showed and explained in the proof of Lemma 2.11
in this report) to a generalized version of the Atiyah-Segal completion theorem[1].
The Atiyah-Segal completion theorem generates to completion at a family of sub-
groups. Basic progroup language is used in the proof of that paper. In this paper
there will be a more accessible proof explaining firstly the simple progroup language
in section 3 and then the topological part of the proof in section 4.

In order to make the proof more explicit, the focus on this research will be
the complex number case since the proof for the real number case is identical to
the complex number case. Also, we will focus only on the original form of the
Atiyah-Segal Completion Theorem showed below, and ignore the generalization to
a family of subgroups that is mentioned in the article by Adams et al. (1988)[1].
The notations of the theorem can be found in the next section.

Theorem 1.1. (The Atiyah-Segal Completion Theorem) Let X be a G-space. Then
the projection EG × X → X induces an isomorphism of progroup K∗

G(X)Î →
K∗

G(EG×X).

2. Method Part

2.1. Equivariant K-theory. In this paper, the definition of equivariant K theory
as suggested in Segal’s publication(1968) [5] will be used.
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Let G be a compact Lie group and we understand a G-space as a G-CW-complex.
Define a G-vector bundle to be a G-map p : E → X which is a complex vector
bundle. For any g ∈ G and x ∈ X, g : Ex → Egx is a homomorphism of vector
spaces. Let KG(X) be the Grothendieck group of the monoid of G-vector bundles
over some G-space X.

Call two G-vector bundles E, E′ stably equivalent if there exist trivial G-vector
bundles M and M ′ such that E ⊕M ∼= E′ ⊕M ′. The stable equivalence classes
form an abelian group K̃G(X). For example, R(G), which is the representation ring
of G, is also equal to KG(pt), and K̃G(pt) = 0 since we only have trivial G-vector
bundles over a point.

Define K̃−k
G (X) = K̃G(S

kX), K̃−k
G (X,A) = K̃G(S

k(X ∪A CA)), K−k
G (X) =

K̃−k
G (X+) and K̃−k

G (X,A) = K̃−k
G (X+, A+) where X+ is the one-point compactifi-

cation of X and SkX is the k-th suspension which is equal to the smash product
Sk ∧ X. For example, Kn

G(pt) = 0 if n is odd and Kn
G(pt) = R(G) if n is even

by equivariant Bott periodicity explained in section 4. Furthermore, Segal(1968)
shows that K∗

G(X) is a generalized cohomology theory and K̃∗
G(X) is a reduced

generalized cohomology theory.
Let EG be the universal space of G, EnG be the n-skeleton of EG. Then EG is

the geometric realization of the simplicial space En(G) = Gn+1 with certain faces
and degeneracies. So EG is a G-CW complex. Explicit construction and properties
can be find in 16.5 of May’s book(1999) [3]. Define IG to be the augmentation
ideal of R(G), that is, the kernel of the restriction R(G)→ R({e}). We will simply
denote IG as I if there is no other group causing ambiguity.

In order to prove the Atiyah-Segal completion theorem, the theorem is given in
the paper by Adams et al.[1](see Theorem 2.1 below) will be proved in section 2.3.

Theorem 2.1. If X and Y are G-spaces, and a G-map f : X → Y is a homotopy
equivalence, then f induces an isomorphism K∗

G(Y )Î → K∗
G(X)Î .

2.2. Progroups.

Definition 2.2. A progroup is an inverse system of Abelian groups, indexed on a
filtered directed poset.

Definition 2.3. If {Mα}, {Nβ} are two progroups, then define the homomorphism
set Hom({Mα}, {Nβ}) = lim←−β

lim−→α
Hom(Mα, Nβ).

To be explicit, an arrow in Hom({Mα}, {Nβ}) can be represented by a set {fj :
Mαj

→ Nj} of group homomorphisms, one for each j, such that for each arrow
g : Nj → Nj′ of {Nβ}, there is some i, an arrow gj : Mi → Mαj

and an arrow
gj′ : Mi →Mαj′ such that g ◦ fj ◦ gj = fj′ ◦ gj′ .

Mi

gj

}}{{
{{
{{
{{ gj′

""D
DD

DD
DD

D

Mαj

fj

��

Mαj′

fj′

��
Nj

g // Nj′
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Note that fj is a representative of an equivalence class in lim−→α
Hom(Mα, Nj). Each

such fj is called a representative of f . On the other hand, two sets {fj : Mαj
→ Nj}

and {f ′
j : Mα′

j
→ Nj} are representatives of the same arrow if for every j, there

exists some i, an arrow gj : Mi → Mαj
and an arrow g′j : Mi → M ′

αj
such that

fj ◦ gj = f ′
j ◦ g′j .

Then it gives a unique composition of two morphisms, and the collection of
identity morphisms in Hom(Mα,Mα) gives the identity morphism of {Mα}. As a
result, progroups form a category.

Generally, a progroup contains more information than the limit of the groups.
Also, {0} gives a zero progroup.

Proposition 2.4. A progroup {Mi} is isomorphic to zero if and only if for any i,
there exists a zero homomorphism fi : Mj →Mi. Such progroup is called pro-zero.

Proof. A progroup {Mi} isomorphic to zero means that id is equal to 0. So by the
explanation above, it is equal to the right hand side. □

The appendix of an article by Artin and Mazur(1969) [7] shows that progroups
form an Abelian category. An explicit description of exact sequences of progroups
can be found below:

Proposition 2.5. Given a sequence of two morphisms of progroups {Li}
f→

{Mj}
g→ {Nk} such that the composition is zero. The sequence is pro-exact if

for every representative fj : Li →Mj of f , there is some hm
j : Mm →Mj and some

representative gk : Mm → Nk of g such that hm
j (ker(gk)) ⊂ im(fj).

To give the statement of the Atiyah-Segal completion theorem, we need the
notion of the formal completion. Given a ring R, an ideal I and a progroup {Mi}
with index A which consists of R-modules.

Definition 2.6. Define the I-adic completion of {Mi} to be progroup {Mi/I
kMi |

i ∈ A, k ∈ Z+} with index A× Z+, and denote it as {Mi}Î .

Then it is an exact functor as follows:

Lemma 2.7. Suppose R is a Noetherian ring, I is an ideal of R and f : A → B
is a morphism between finitely generated R-modules. Then there exists c ∈ N such
that for any n ∈ N+, ker(A→ B/In+cB) ⊂ ker(f) + InA.

Proof. We can decompose A → B/In+cB into A → im(f) → B/In+cB and let C
be im(f). Then 0 → C → B is exact. By Artin-Rees lemma, we can choose c > 0
such that for any n > 0, ker(C → B/In+cB) = C ∩ In+cB ⊂ InC.

Since tensoring R/InR is right exact and C = coker(ker(f)→ A), ker(f)/Inker(f)→
A/InA → C/InC → 0 is exact. So ker(A → C/InC) ⊂ ker(f) + InA. Com-
bining the two results we come to the conclusion that ker(A → B/In+cB) ⊂
ker(f) + InA. □

Theorem 2.8. If R is a Noetherian ring, the I-adic completion is an exact functor
in the subcategory of progroup consisting of finitely generated R-modules.

Proof. For any morphism f : M → N between R-modules, f(IkM) ⊂ IkN . Let
f̃k be the corresponding morphism M/IkM → N/IkN . It commutes with compo-
sition. So formal completion is a functor.
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Then it suffices to prove that for pro-exact sequence {Ai}
f→ {Bj}

g→ {Ck}, the
sequence {Ai}Î → {Bj}Î → {Ck}Î is pro-exact.

For any representative fj : Ai → Bj and any m ∈ Z+, suppose there is rj
′

j :

Bj′ → Bj and gk : Bj′ → Ck such that rj
′

j (ker(gk)) ⊂ imfj . By the lemma above,
we have some c > 0. Suppose g̃k is the map Bj′/I

m+cBj′ → Ck/I
m+cCk induced

from gk. Then we have that ker(g̃k) ⊂ ker(gk) + Im. Let f̃j be Ai/I
mAi →

Bj/I
mBj induced from fj and r̃ be Bj′/I

m+c → Bj/I
m induced from rj

′

j . Then
im(f̃j) = im(fj) + Im. So by Lemma 2.7, r̃(ker(g̃k)) ⊂ r̃(ker(gk) + ImBj′) =

r(ker(gk)) + ImBj ⊂ im(f̃j). So the sequence {Ai}Î → {Bj}Î → {Ck}Î is pro-
exact. □

If X is a finite G-CW-complex, then X → {pt} gives R(G) = K0
G(pt)→ K0

G(X).
So K∗

G(X) has the structure of a R(G)-module.

Definition 2.9. For any G-CW-complex X(not necessarily finite), Kn
G(X) is a

progroup Kn
G(Xα) where Xα runs over the finite G-subcomplexes of X.

Then by the theorem above, K∗
G(X)Î is a generalized cohomology theory.

2.3. Proof of Theorem 2.1. Let M be a term in the cofiber sequence X → Y →
M . Since X is homotopy equivalent to Y , M is contractible. So by the cofiber
exact sequence it suffices to prove the following theorem.

Theorem 2.10. If X is contractible, then K̃∗
G(X)Î is pro-zero.

Suppose U is the collection of G representations V such that V G = {0} and
V H 6= {0} for some proper subgroup H < G. For any proper subgroup H < G,
notice that the induced representation IndGH1H is nontrivial, so we can choose
a nontrivial irreducible sub-G-representation V ⊂ IndGH1H . Then by Frobenius
reciprocity, HomH(1H ,ResGHV ) = HomG(Ind

G
H1H , V ). Thus V G = {0} and V H =

V 6= {0}. So we have V ⊕k ∈ U for any positive integer k. Let I be a finite set
of representations in U , and let Y I be the one point compactification of the direct
sum of elements in I. Then (Y I)G = S0. The inclusion I ⊂ J gives an inclusion
Y I → Y J . Define Y to be the colimit of all Y I ’s.

Lemma 2.11. {K̃∗
H(Y )}

ÎH
is pro-zero for all H < G.

Proof. If H is a proper subgroup of G, then for Y I , choose V ′ such that H acts
trivially on V ′. Let J be I + {V ′}, V be the direct sum of elements in I, and W
be V ⊕ V ′. Then Y I = SV and Y J = SW . So ((v, v′), t) 7→ (v, v′/t) for 0 < t ≤ 1,
((v, v′), 0) 7→ ∞, and (∞, t) 7→ ∞ give a homotopy between the null map to infinity
and the inclusion map from SV to SW . So such inclusion map is null-homotopic.
Since I is arbitrary, Y is H-contractible. Then the lemma is obvious.

If H = G, it suffices to show that for any Y I and m, there exists Y I → Y J such
that the map K̃∗

H(Y J)/ImK̃∗
H(Y J)→ K̃∗

H(Y I)/ImK̃H is 0.
The Bott periodicity for equivariant K theory is described at Proposition 3.2

of Segal’s publication[5] and Theorem 4.3 of the paper by Atiyah[8]. It says the
following: for any complex G-module V , there is an element λV ∈ K0

G(V ) =

K̃0
G(S

V ), λV =
∑∞

i=0(−1)iΛiV where Λi is the i-th wedge power. Then multiply
by λV induces an isomorphism K∗

G(X) → K∗
G(V × X). If W = V ⊕ V ′, then we

have λW = λV ′λV .
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By Bott periodicity, taking X = pt, then K̃∗
G(S

V ) is the free K̃∗
G(S

0)-module
generated by the Bott class λV ∈ K̃0

G(S
V ). Suppose W = V ⊕ V ′. The inclusion

i : SV → SW is equal to idV ∧ i′ where i′ is the inclusion S0 → SV ′ . Then
i∗(λW ) = i′∗(λV ′)λV . Notice that there is a commutative diagram

K̃n
G(S

V )
i′∗G //

r

��

K̃n
G(S

0)

r

��
K̃n(SV )

i′∗e // K̃n(S0)

where each column is the restriction. Since i′ is null homotopic (not equivariantly),
r(i′∗G(λV ′)) = i′∗e (r(λV ′)) = 0. So i′∗(λV ′) ∈ I. Choose Y J = Y I ⊕ V ⊕ · · · ⊕ V (the
number of V ’s is m) then the proof is done. □

There is a cofiber sequence S0 → Y I → Y I/S0 and take smash product with
some X to get a cofiber sequence X → X ∧ Y I → X ∧ (Y I/S0).

Theorem 2.12. For any finite G-CW-complex X, the progroup {K̃∗
G(Y ∧ X)Î |

k ∈ N} is zero.

Proof. Use induction on dimension d of X. The case when d = 0 follows from
Lemma 2.11. It suffices to show that the G-space X ′ obtained by attaching an d
cell to X still satisfies the property. There is a pro-exact sequence

· · · → K̃∗
G((G/H)+ ∧ Sd ∧ Y )Î → K̃∗

G(X
′)Î → K̃∗

G(X)Î → · · ·

. By the suspension axiom, it suffices to show that K̃∗
G((G/H)+ ∧ Y )Î is pro-zero.

Example (iii) of section 2 in Segal’s publication(1968)[5] shows that K̃∗
G((G/H)+ ∧

Y ) = K̃∗
H(Y ). Corollary 3.9 of Segal’s paper(1968)[4] shows that IG (acts through

restriction) and IH topology are the same. Then it follows from pro-exactness and
lemma 2.11. □

Since M is contractible, we consider the homotopy H : M×[0, 1]→ EG such that
H(M × {0}) = idM and H(M × {1}) = pt. Since every G-subcomplex Mn has a
open neighborhood that contracts to itself and it is compact, H(Mn× [0, 1]) ⊂Mm

for some m. So Mn ↪→ Mm is null homotopic. As a result, the progroup K̃∗(M)
is zero.

We also need a remark to prove K̃∗
G(M)Î is pro-zero.

Remark 2.13. Consider the lexicographical ordering given by dimension and the
number of connected components of subgroups of the compact Lie group G. We
have that any descending chain of G is finally constant. So we can use transfinite
induction on the poset of inclusion of subgroups of G.

Theorem 2.14. For any G-space X such that K̃∗(X) is pro-zero, we have K̃∗
G(X)Î

is pro-zero.

Proof. We use induction on subgroup H < G.
The case H = e is just the hypothesis.
Suppose H is not e. Without loss of generosity let H = G. Cofiber sequence

X → X ∧ Y → X ∧ (Y/S0) gives a long pro-exact sequence
· · · → K̃k

G(X ∧ Y )Î → K̃k
G(X)Î → K̃k+1

G (X ∧ (Y/S0))Î → · · ·



6 LIHUANG DING CHINA CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY

By Theorem 2.12, K̃k
G(X ∧ Y )Î is pro-zero. So it suffices to show that K̃k

G(X ∧
(Y/S0)) is pro-zero.

In fact we can prove that (K̃k
G(X∧Z))Î is pro-zero for every k and finite G-space

Z such that ZG = pt. We use the same induction as Theorem 2.12. We induct
on the dimension d of Z. Notice that Z0 = pt, the d = 0 case is trivial. Consider
attaching a d-cell (G/H)+∧Sd to Z and getting Z ′. Since ZG = pt, H 6= G. There
is a pro-exact sequence

· · · → K̃k
G((G/H)+ ∧ Sd ∧X)Î → K̃k

G(Z
′ ∧X)Î → K̃k

G(Z ∧X)Î → · · ·

. By the suspension axiom, it suffices to show that K̃k
G((G/H)+ ∧X)Î is pro-zero

for each k. Since K̃∗
G((G/H)+ ∧X)

ÎG
= K̃∗

H(X)
ÎH

and H is a proper subgroup of
G, it follows from the induction hypothesis. □

Combining Theorem 2.14 and the discussion above we get Theorem 2.10.

3. Results

To deduce Theorem 2.1 from Theorem 2.2, it suffices to show that K∗
G(EG×X)

is I-adically complete.

Lemma 3.1. If G acts freely on some G-space X, then K∗
G(X) is discrete in the

I-adic topology, so it is complete.

This lemma can be found at Proposition 4.3 in the article by Atiyah and Segal(1969)[6].
From the construction of EnG we know that G acts freely on EG. So G acts

freely on EG×X. Then Theorem 2.1 holds.
If we take X = pt, then we have that K(BG) = KG(EG) ∼= R(G)Î .
If X is compact, then KG(EG ×X) ∼= KG(X)Î . So KG(EG ×X) satisfies the

Mittag-Leffler condition. Then we can identify K∗
G(EG×X) with limnK

∗
G(E

nG×
X).

4. Discussion

By using method in section 2, we can prove the real number case of the comple-
tion theorem using equivariant Bott periodicity of the real number representation
which is more useful and interesting than the complex number case.

Also, if we include a little knowledge of Lie group, such as classifying space of
a family of subgroups (which requires Elmendorf’s theorem), there is a case stated
in the paper by Adams et al.(1988) [1]. This paper also uses the same method to
prove a localization theorem. And furthermore, we can generalize the Atiyah-Segal
completion theorem to twisted K-theory.
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