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Abstract: Developing countries often have poor monitoring of weather and crop health, leading

to slow responses to droughts and food shortages. I developed satellite analysis methods and

software tools to predict crop yields three months before the harvest. This software measures relative

vegetation health based on pixel-level vegetation indices (VIs). VIs are a measure of plant health that

are calculated from the light spectrum emitted from the land. Because this method requires no crop

mask or subnational yield data, it can be applied to any crop or climate, making it ideal for African

countries with small fields and poor ground observations. A validation was first conducted in Illinois

where there is reliable county-level crop yield data. The monthly VIs were extremely well correlated

with corn, soybean, and rice yields, showing that this model has good forecasting skill for crop yields.

Next, the vegetation health was measured in every country in Africa to predict crop yields for the

2018 harvest. The yield predictions were very accurate with a median error of 8.6%. This method is

unique because of its simplicity and versatility: it shows that a single user can produce reasonable

real-time estimates of crop yields across an entire continent. For more details, see: Petersen, L.K.

Real-Time Prediction of Crop Yields From MODIS Relative Vegetation Health: A Continent-Wide

Analysis of Africa. Remote Sens. 2018, 10, 1726., https://www.mdpi.com/359918

1. Introduction

In the United States and Europe, there is exceptional monitoring and reporting of weather and

crop health. With thousands of weather stations and regional crop yield data [1,2], crop yields may be

predicted based on historical records [3]. However, not all parts of the world have open, reliable data

[4]. Lack of data is a particularly important problem in developing countries where crop yields are less

stable and droughts can lead to famines, death, government instability, and war.

Recent years have shown an advancement in strategies to obtain better data coverage in

developing countries [5]. For example, detailed surveys offer researchers insights into African

agriculture. However, these methods require expensive ground-based operations and remain difficult

to scale across a large area, and are often quite inaccurate [6]. Agriculture is one of the backbones of

African economies and provides food, income, power, stability, and resilience to rural livelihoods [7].
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Figure 1. Farm fields by satellite in Ethiopia and Illinois at the same resolution. In Africa, small farm
fields (smaller than a MODIS pixel) and poor ground truth data increase the difficulty of analyzing and
predicting crop yields. Images are from Google Maps.

Agricultural development is widely known to be crucial for poverty reduction and improved health;

thus, there remains a major need to monitor crop health in the developing world [8,9].

Remote sensing has become an asset for detecting environmental changes that impact crop health

[10–13]. Today, satellite imagery costs less and is more easily accessible, making remote monitoring

more broadly available to scientists and the general public.

However, crop prediction is still very challenging in many African countries due to minimal

reporting of crop health and yields; farms consist of very small plots of varied crops interspersed with

buildings (Figure 1); and the continent contains a vast number of different climates, growing seasons,

and crops [15,16].

A couple of groups currently publish real-time forecasts of crop health. For example, the Group

on Earth Observations Global Agricultural Monitoring Initiative (GEOGLAM) [17] and USDA Famine

Early Warning System Network (FEWS NET) [18–20] generate advance notice of impending food crises.

These systems are comprised of large teams that incorporate data from remote sensing, on-the-ground

monitoring, field reports, and agroclimate indicators such as rain, snow, and surface temperatures.

These large models require an extensive budget. In contrast to this study, their predictions are

simplified into qualitative categories instead of numerical values.

This study differs from previous work in the US and Africa because of its simplicity: it shows that

a single user with a personal computer can produce reasonable forecasts of crop yields for the whole

continent. I compute an overall measure of relative vegetation health compared to the mean on a

per-pixel basis over select subregions in every African country, thus evaluating whether dense farming

areas can be used as representative samples of larger regions to increase computational efficiency.

Unlike many previous studies, it may be applied anywhere in the world—it does not depend on

special tuning for the particular crop, region, or climate of interest. Relatively low-resolution pixels of
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Figure 2. The box examined in Ethiopia and its September NDVI anomalies during a wet year and a
dry year. The NDVI anomalies are particularly evident in the Rift Valley, where farming is the most
dense.

the Moderate Resolution Imaging Spectroradiometer (MODIS) decrease the amount of data that must

be processed, making this system cheaper and more efficient. Crop masks are not used in this model to

increase simplicity, versatility, and eliminate the complication of small field sizes, intercropping, and

imperfect crop masks. The method was created for developing countries where detailed monitoring on

the ground simply does not exist, and was successfully validated against extensive crop data in Illinois.

The goal of this study was to see how well crop yields may be predicted using extremely

straightforward methods based on simple averages and differences of common indices over dense

farming regions and the resulting correlations. More complex models with crop masks and detailed

tuning require a substantial staff and several years to develop and validate. This method, developed

and tested by the author over the course of a couple months on a laptop computer, can produce

reasonable forecasts of crop yields for the whole continent.

2. Methods

The primary goal of this research is to create a predictive measure of crop yields computed from

satellite data. Python code was written to obtain satellite images, mask out clouds, calculate vegetation

and water indices (VI), compute monthly VI anomalies since 2000, and correlate the anomalies with

crop yield anomalies for every county in Illinois, which served as a proof of concept due to large

amounts of ground truth data in the US. The same method was then applied to every country in Africa

to create an early indicator of crop yields.

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was obtained from the

Descartes Labs Satellite Platform (Figure 2). I obtained the red, green, blue, and nir infrared (NIR)

band for Illinois and Africa for the years 2000-2018. First, clouds were masked out to not be included

in the monthly average. To measure the health of crops throughout the growing season, three VIs

were computed: NDVI, EVI, and NDWI, defined in Table 1. All three indices have served as crop

monitoring tools in previous studies, and have been shown to resemble actual crop conditions. The

indices range from −1 to 1, and healthier vegetation registers closer to 1.
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Table 1. Definitions of vegetation indices to measure crop health. NIR is near infrared; G is the gain
factor; L is the canopy background adjustment that addresses non-linear, differential NIR and red
radiant transfer through a canopy; and C1 and C2 are the coefficients of the aerosol resistance term,
which uses the blue band to correct for aerosol influences in the red band.

Index Description Formula

NDVI Normalized Difference Vegetation Index NDVI = NIR−Red
NIR+Red

EVI Enhanced Vegetation Index EVI = G ∗ NIR−Red
NIR+C1∗Red−C2∗Blue+L

NDWI Normalized Difference Water Index NDWI = Green−NIR
Green+NIR

For every pixel in Illinois, the VI monthly averages and climatologies were computed. The process

begins with daily cloud-masked MODIS swaths. The climatology is defined as the average VI over

2000–2016 for each month and pixel. Next, the monthly climatology is subtracted from the monthly

average for every pixel, resulting in the monthly anomaly. The pixels in each county are averaged

together to find the county-wide monthly anomaly and county-wide monthly average.

Illinois was chosen as a test site because the land is mostly agricultural and can provide a clear

signal of crop health. Illinois also has very little irrigation: most counties irrigate less than 1% of

their fields [21]. Similarly, 90% of staple food production in sub-Saharan Africa comes from rain-fed

farming systems [22].

Annual crop yield data was downloaded for every county in Illinois for 2000–2016 for three

crops: corn, soybeans, and sorghum, from USDA county estimate reports [1]. Because each county has

different growing conditions, the mean was subtracted out of each county’s crop yield to find the yield

anomaly so that comparisons could be made across all counties. Correlations were found between

each county’s yield anomaly and the three VIs for five months, May–September. To find the highest

possible correlation amongst these variables and months, a multivariate regression was fit to each

month and index for a total of 15 variables (5 months × 3 VIs).

To test the predictive ability of the model, the data were split into a training group of 90% and a

testing group of the remaining 10%. The multivariate regression was then fit to the training data and

asked to predict the testing set. To ensure randomness, this process was repeated ten times for each

crop, and the analysis is the composite of these ten prediction sets.

After testing in Illinois was complete, the method was applied to every country in Africa. In

each country, the two to four highest-producing crops were analyzed [23]. In each country, a box was

analyzed over a dense farming region, which served as a representative sample of the entire country.

The VI anomalies and averages from these regions were then correlated to national crop production

data [23]. The daily MODIS imagery over the selected boxes in each country was processed in a similar

way to Illinois. First, the bands were retrieved from the Descartes Platform. NDVI, EVI, and NDWI

were computed, and cloudy pixels were masked out. The climatology for each pixel was subtracted to

obtain monthly anomalies as well as averages of all three indices. Next, correlations were computed

between the six indices of the month at the height of the growing season and the crop production. The
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Figure 3. Illinois corn yields versus NDVI anomaly for each year (upper left), as a correlation plot for
each county and year (lower left) and for examples of dry and wet years (right).

height of the growing season is defined as the month in the growing season that the NDVI average

peaks.

Future crop production for the 2018 harvest was then predicted for every African country. Later,

once actual production values were published, the error of the predictions in every country and crop

was computed.

3. Results

3.1. Illinois

The method was first validated in Illinois and then applied in Africa. Correlations were computed

in Illinois between the anomalies of NDVI, EVI, and NDWI, and three crops: corn, soybeans, and

sorghum; all were found to have high correlations. The method was first tested with state-wide

averages to show that results are significant when analyzing a large area. The correlations between

state-wide corn yield and NDVI, EVI, and NDWI anomalies are extremely statistically significant at

0.90, 0.85, and −0.92 respectively. Figure 3 shows the differences in NDVI anomalies and corn yields

during a drought year (2012) and a wet year (2014).
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Figure 4. The map in the center displays the predicted crop production in standard deviations from
the average. Surrounding the map are bar charts of satellite indices (blue), historical crop production
(dark green), predicted 2018 crop production (pink), and actual 2018 production (light green).

To test the predictive power of the model, it was trained on a random 90% of the data and then

predicted the remaining 10%. This process was repeated ten times. The model could predict the yield

with reasonable error based on only the VI anomalies of the entire county, demonstrating how this

simple method is a good indicator of crop yields.

3.2. Africa

The high correlations in Illinois show that this model has good forecasting skill for crop yields.

Next, this method was applied to every country in Africa. First, a box in an agricultural region was

selected in each country and a total of 10 terabytes of daily satellite imagery was processed according

to the method above. Correlations and linear regressions were computed in every country for their 2–4

highest producing crops. Difficulties in finding accurate correlations include:
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• false reporting of production in some countries due to lack of resources, poor oversight, or

corruption (e.g., DR Congo, Eritrea, Libya). In severe cases, one could simply use the NDVI

anomaly as a proxy for production rather than computing a correlation with reported crop yields.

• multiple growing seasons in specific central countries (Rwanda, Somalia);

• poor quality of earth observation data (e.g., clouds) every day for months at a time in central

African countries (Gabon, Cameroon) [14]; and

• time delays and misclassification of harvests during October–December, where production is

incorrectly reported in the following calendar year (Nigeria, Sudan).

In each African country, correlations were computed between every crop and six indices (NDVI,

EVI, NDWI, monthly averages and anomalies). Next, the historical regressions were used to predict

crop production for 2018 harvests. Every country that reported productions for their 2018 harvest

before the publication of this article was examined. This includes harvests ranging from December

2017 (e.g., Ethiopia) through June 2018 (e.g., Namibia), and included a total of 21 countries, about

half of Africa. In April 2018, VI anomalies and crop predictions were posted on a publicly viewable

interactive map [24], and the actual production values were added as they became available in mid to

late 2018 (Figure 4).

In Ethiopia, the model predicted the 2018 harvests to yield 7055 giga-tonnes (GT) of corn and 4174

GT of sorghum. The actual production was 7100 GT and 4100 GT, respectively, for an error of 0.6% and

1.8%. These minimal errors show how this simple model can predict yields very accurately, even with

only a few years of historical relationships.

Small errors in predictions were common across Africa. The median error was 8.6%. Twenty-one

percent of the predictions had a relative error below 2%, and 40% had errors below 5%.

4. Conclusions

In this research, I developed a method to predict crop yields 2–4 months before the harvest, based

on daily MODIS satellite imagery. The model was first validated in Illinois where there is county-level

crop yield data by computing the linear fit between yields and VIs. When a split-sample validation was

applied to a multivariate regression with all months of the growing season and all three VIs, the model

could predict the crop yields within 5.7%, 5.8%, and 22% for corn, soybeans, and sorghum, respectively.

After this success, satellite imagery was analyzed in every African country, and productions for the

2018 harvests were predicted 2–4 months before the harvest. Once 2018 harvests were published, the

prediction accuracy was tested against the reported values. Forty percent of the predictions were

found to have less than a 5% error.

The main objective of this study was to show how a very simple method can serve as an early

warning system to predict crop yields in every African country. This method relies solely on NDVI,

EVI, and NDWI anomalies calculated over specific subsections of the countries, without the use of

crop masks, subnational yield statistics, or special tuning for location or climate. Even with these many
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simplifications, the model was still able to produce predictions with reasonable error over Illinois and

throughout Africa.

The prediction accuracy for different crops varies substantially. Some crops are harder to predict,

as each crop correlates to the VIs with different strengths. Some crops may also be affected by extreme

weather late in the season, which this model does not include since it predicts yields from the height

during the growing season. Millet, sugar, and rice had the lowest errors, while cotton, wheat, and

sorghum were much harder to predict.

A limitation of this model is that it relies on published yield data, so it will not predict as reliably

in countries that lack reporting accuracy. In these places, the NDVI anomaly could be used as a proxy

for relative crop yields compared to a mean. The model also only predicts yields at the national level

and has no subnational component. However, it has the ability to predict yields sub-nationally in the

future when sub-national crop data are supplied.

In this study, country-wide crop production was correlated to VI anomalies over dense farming

regions to test if small areas could serve as representative samples of the entire country. In most

countries, the subregions only covered between 1% and 15% of the total land, depending on the size of

the country and box. Despite these small areas, the model produced surprisingly high correlations

between the VIs and crop production. South Africa is an exception, with low correlations and high

errors in the predictions. South Africa has farms across the country, so the selected box was not able to

represent the entire area. In many other African countries, one region is a primary producer and can

be used to predict country-wide production.

The model developed here may be compared to the existing early-warning systems of GEOGLAM

and FEWS NET. Both are run under large budgets by an extensive team of people with partnerships

around the globe. Their systems include local surveyors, remotely sensed data, agroclimate indicators,

field reports, and communications with national and regional experts. In contrast, this method can be

run by a single user on a modern laptop computer. It was developed over the course of a couple months,

and is practically free. This model is also able to predict a numerical value of crop production, while

GEOGLAM and FEWS NET present their results as a qualitative measure: conditions are compacted

into five categories of crop conditions or food insecurity phases.

The power of the method developed here is that it can be applied to any crop, location, or climate

to produce reasonable real-time forecasts of crop yields. It is unique because of its versatility and easy

to apply due to its simplicity.
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